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P 

Abstract The extended phase space of an elementary (relativistic) system is introduced in the 
spirit of Souriau’s definition of the ‘space of motions’ for such a system. Our ‘modification’ 
consists in taking into acconnt not only the symmetry (Poincd) group but also its action on 
the (Minkowskl) spacetime, i.e. the full covariant system. This yields a general procedure to 
consmct spaces in which the equations of motion can’ be formulated: phase trajectories of the 
system xe identified as chancleristics on some constraint submanifold (‘mass and spin shell‘) in 
the extended phase space. Our formulation is genemlly applicable la any homogeneous spacetime 
(e.g. de Sitter) and also to Poisson actions. Calculations concerning the Mlnkowski case for 
non-zero spin particles show an intriguing alternative: we should either accept two-dimensional 
trajectories or (Poisson) non-commuting spacetime coordinates. 

Introdi iction 

Accord ng to Souriau [l], the space of ‘motions’ (‘histories’, ‘phase trajectories’) of a 
classic; 1 mechanical system has a structure of a symplectic manifold. If the system 
is isokbd, then the spacetime symmetry group acts (symplectically) on this manifold. 
Elemen my sysfem are those for which this action is transitive (such systems ‘do not have 
other S ructure than their spacetime  situation'^ [l]). By the momentum mapping theory, 
transit? ‘e actions correspond to coadjoint orbits of the underlying’group (modulo possible 
cohomi logical problems, not present in our basic case: Poincar6 group). 

Thi ; is probably the most basic physical application of groups. The symmetry group 
under q iestion (Poincar6, Galileo; de Sitter, etc) determines (by an algorithm) possible types 
of eletr sntary particles (mass, spin, etc) and the set of their motions. However, the motions 
are des aibed only as abstract points of coadjoint orbits. The algorithm does not directly 
provide a description of motions as solutions of ‘equations of motion’, which we would 
expect o be formulated in an appropriate bundle over spacetime. 

As 1 way to determine the full model of the particle, we introduce in this paper exfended 
phase .paces (in which the equations of motion can be formulated). Like the ‘space 
of mot nns’, an extended phase space is defined as a symplectic ‘transitive’ space, the 
transit? ‘ity this time being understood with respect to the pair group + spacetime rather 
than to the group alone (we ‘represent’ not only the infinitesimal generators of the group 
but alsi functions on the spacetime, in a covariant way). 

Thc paper is organized as follows. The definition of extended phase spaces is given 
in sect on 2, after a short investigation of the simplest well known case in section 1. 
All ext !nded phase spaces are classified in section 3 (they turn out to be in one-to-one 
corresp mdence with thecoadjoint orbits of the Lorentz group). The reduction of an extended 
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phase space by fixing value of spin and mass (which relates the extended phase space to a 
coadjoint orbit of the Poincar.4 group) is described in section 4. It t w s  out that the history 
of the particle is represented by a ‘world tube’ rather than world line. 

It is convenient to also have in mind here the quantum case. Quantum elementary 
particles are related to irreducible unitaq representations of the spacetime symmetry group 
and the corresponding full description (wave equation) should be (in OUT approach) related 
to covariant representations of the pair group + spacetime (in this context, such a pair is 
called a dynamical system; we prefer to avoid this terminology). In section 5 we explain 
how the quantum formulation results from the classical one. 

In our opinion, it is convenient to use similar language both in the quantum and the 
classical case. We shall speak about representations, irreducibility, etc in the classical case 
(instead of symplectic realizations, transitivity, etc). 

In section 6 we perform a partial reduction of an extended phase space by fixing the 
value of spin. The original fibration over spacetime does not descend to the quotient, but 
another one exists which does. With respect to the new fibration, the spacetime coordinates 
do not commute, the Poisson bracket being proportional to the spin tensor and inversely 
proportional to the square of the mass. 

1. Homogeneous formulation of mechanics and relativistic spin zero parlicle 

Let Q denote the configuration space of a non-relativistic mechanical system. A (non- 
homogeneous) Hamiltonian formulation of dynumics of such a system is given by specifying 
a (time-dependent) Hamiltonian function H:R x T-Q + R, which generates the equations 
of motion: 

Here T * Q  denotes the cotangent bundle of Q (the phase space), (xX)y,l, ....N- some 
coordinates in Q, ( x k ,  pj)-the induced coordinates on the phase space and the dot denotes 
the differentiating with respect to time. 

Now consider the extended configuration space M := R x Q and the hypersurface CH 
in T*M given by 

CH = ((t,x1,. . . , x N ,  e, pi,. . . , p ~ )  E T*M : e = H ( r , x ,  p ) ]  (2) 

(‘energy’ = ‘Hamiltonian’), where t = xo  is the time variable and -e = po is the conjugate 
variable (minus ‘energy’). Of course, specifying H is the same as specifying CH. It is 
easy to check that solutions of (1) are in one-to-one correspondence with characteristics on 
CH (characteristics = the integral curves of the degeneracy distribution of the symplectic 
form restricted to CH).  The description in terms of CH is said to be the homogeneous 
formulation of Hamiltonian dynamics~ (cf e.g. [Z]). The cotangent bundle T ” M  is said to 
be the extended phase space. 

The homogeneous description is particularly useful in the case of a relativistic point 
particle (with spin zero). In this case M is just the Minkowski spacetime M: 

M := M ,  

For a free particle with mass m, the corresponding submanifold of T*M is just the ‘mass 
shell’: 
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Here p 2  = gk'pwpl is the Lorentz square of the 4-momentum (gx' is the contravariant 
Lorentz metric). 

The Poincar.6 g r o u p t h e  (connected) group of affine transformations of M leaving 
g invariant-will be denoted by C, its Lie algebra-by g. The canonical moment map 
J : T * M  + g* for the action of G on T*M (the lift of the natural action of G on M )  
identifies the set of characteristics on C,,, with the coadjoint~orbit in g* corresponding to 
the mass m and spin zero. This gives a natural realization of the abstract points of this 
coacjoint orbit as trajectories. The equations of motion are encoded in the mass shell C, 
(which is nothing else but the inverse image of the coadjoint orbit by J) .  

We regard the above description as a full model of a (free) relativistic particle with mass 
m and spin zero. Now we extract its main features in  order to pass to a general case. We 
observe the following three essential properties of the above model (we set P := T'M): 

(1) P is a Hamiltonian C-space, in other words, 

a complete Poisson map J :  P 4 g* is given. 

(2) P is fibred over M (with coisotropic fibres), i.e. 
a complete Poisson map n: P + M is given. 

(3) The following covariance holds: X p ( n *  f) = z*(X,+,  f ) ,  or, equivalently, 

[ J * X , n * f )  = n * ( X ~ f )  (4) 
for X E g, f E Cm(M). Here X,+, (or X p )  denotes the fundamental vector field of the 
action of G on M (or P), corresponding to X E g, and n'f is the pullback o f f  by z 
(similarly, J * X  is the pullback of ,X by J ,  where X is treated as a linear function on g*). 
Of course for P = T * M ,  n is the cotangent bundle projection. 

Remark 1.1. We recall that g* is naturally a Poisson manifold. The Poisson structure on M 
is zero. A Poisson map is said to be complete [3], if it sends (by pullback) functions having 
complete Hamiltonian vector fields on functions with the same property (such functions are 
called complete). 

2. Covariant representations, extended phase spaces 

It is convenient to introduce the following terminology. 

Defntition 2.1. A representation of a Poisson manifold N in a symplectic manifold P is a 
complete Poisson map W from P to N. 

DefNlition 2.2. Suppose we are given an action of a Lie group G on a manifold M .  A 
covariant representation of (M,  g*) in a symplectic manifold P is a pair (n, J ) ,  where x is 
a representation of M in P, J is a representation of gx in P and the condition of covariance 
(4) is satisfied. 

An example of a covariant representation was presented in the previous section. 
In fact, it has one more important property: it cannot be 'decomposed' onto smaller 
'subrepresentations', because 

(5) X p ,  Xz.j (with X E g, f E Cm(M)) span T P .  

Here XA denotes the Hamiltonian vector field of the function h.  Note that X p  = X p x  for 
X E g 2: (g*)* and one can replace X p  in (5) by XI.$ for @ E C"(g*). 
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We say that a covariant representation (z, J )  of (M,g*) in P is irreducible if 
condition (5) is satisfied. Similarly, a representation Y of a Poisson manifold N in a 
symplectic manifold P is said to be irreducible, if Xq.6 span T P  for h E Cm(N).  

We can now introduce our fundamental definition. 

Definition 2.3. By an extendedphase space of a relativistic particle we mean an irreducible 
covariant representation of ( M ,  g*), where M is the Minkowski space and G is the Poincar6 
grO~P. 

Remark 2.4. The above definition is applicable to other situations, like the de Sitter 
spacetime or the case of Poisson Minkowski space [4]. In the latter case one should 
replace g* by G*-the Poisson dual of the Poisson Poincart5 group [5-81, and also J'X in 
(4)-by the right-invariant 1-form on G" corresponding to X. In all these cases one has 
the basic example provided by the cotangent bundle of M (symplectic groupoid [9-11,3] 
of M in the case of general Poisson M ,  see [5, 6,8,12]). 

In order to find all covariant representations of (M, g') for a given action of G on 
M, we notice that they are in one-to-one correspondence with representations of a certain 
Poisson manifold (a similar fact is known in the theory of crossed products). 

Proposition 2.5. There is a 1-1 correspondence between covariant representations ( x ,  J )  
of (M, g*) and representations Y of the semi-direct Poisson product M x g*, given by 

\ I r = n x J .  

Y is irreducible if and only if (z, J )  is irreducible. 

To see that this proposition is reasonable, recall [I31 that M x g* is the Cartesian product 

{ f i , f Z I = o  (xl,xZ~=[xI~x21 Ix,f)=xMf (6) 
for f l ,  fz E Cm(M), X I , ~ X ~  E e. We choose the convention that X H XU is a 
homomorphism of Lie algebras, hence we choose the commutator in g based on right- 
invariant vectorfelds. 

Since irreducible representations of a Poisson manifold are just (coverings of, its 
symplectic leaves (this is a generalization of the familiar fact concerning the moment map 
of a transitive Hamiltonian action), we conclude that irreducible covariant representations 
of ( M ,  g*) are (coverings of) symplectic leaves in M x g*. 

of M and g' equipped with the semidirect Poisson structure defined by 

3. The classification of extended spaces 

In order to describe all possible extended phase spaces we have to study the structure of 
the Poisson manifold M x g* in the Minkowski-Poincart5 case. 

We denote by V the subgroup of translations in the Poincar6 group G. This is a normal 
subgroup and 

L : = G / V  

is the Lorentz group, acting naturally in V-the tangent space of M. Any choice of x E M 
allows to identify L with the stabilizing subgroup G, of G. We denote by [ and gx the Lie 
algebras corresponding to L and G,. 
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Proposition 3.1. The natural map 

M x g' 3 ( x ,  (U) H ( ( x ,  p ) .  S) E T'M x [* 

where p is the restriction of a to V and S is the restriction-of 01 to gr N I, is a Poisson 
isomorphism (T'M x I* considered with its direct product Poisson saucture). 

Proof. Choose a basis ek in V and set 

Mkl := ek C3 g(e1) - el 0 g(ek) E I C End V .  

The 'right' commutators in g 2: V x I (we fix an identification M N V )  are given by 

[ M j k ,  Minl Mj& + M k d j l  - Mjngkl - Mtlgjn [ M j k ,  ell = -ejgki ekgjf .  

The same formulae define the Poisson brackets on 0': 

= M j l g k n  f Mkngjl - Mj&r - Mklgjlgj, {Mjk,  i'11 - P j z k f  f Pkgj f  

(the elements of g are now (linear) functions on g* N V" x r). We have denoted eh, viewed 
as functions on V*, 'more physically'-by pk  (the momenta). 

It is easy to see that the 'cross' Poisson brackets in M ,x g* are given by 

{Mjk ,  X ' )  = -x j8k1 + X k S j '  { P j , X 1 ]  = Sj' 

where x1 are coordinates on M N V (corresponding to e l )  and xk = gklx' (summation 
convention). 

The transformation ( x ,  (p, M ) )  w ( ( x ,  p). S) is given in terms of coordinates by 

S jk  = Mjk - pjxk f P k X j ,  

Now it is easy to see that {Sjk, x ' )  = 0, {S jb ,  p l ]  = 0 and 

{ S j k r  Slnl = Sjlgkn + Skngjl 7 Sjngkl -sklgj"' 

The latter equality follows easily from 

(7) 

( W j k ,  win) = Wjlgkn  + Wkngj l  -~wj&kl - Wklgjn 

where w j k  := pjxt  - prxj (a consequence of the fact that wjt describes the canonical 
momentum mapping for the action of L on T"M = T*V) ,  and 

{ M j k .  W l n )  = Wjlgkn f wkngjl  - wjsgkl - wklgjn .  

0 

CoroNary. Extended phase spaces are of the form 

P = T * M x O  

where 0 is a coadjoint orbit in I*. They are in one-to-one correspondence with these 
coadjoint orbits. The trivial coadjoint orbit yields simply T'M-the extended phase space 
of a spinless particle, described in section 1. 
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Now we recall some basic facts concerning the Lorentz Lie algebra [. By definition, 
I C End V is the orthogonal Lie algebra of the Lorentz metric g of signature (1.3) in V. 
The map 

i d 8 g  : V 8 V + V x V* 

defines a linear isomorphism between A V and 1. We set 

EndV 
1 

x y := x 8 g(y) - y 8 g ( x )  = (id @g)(x A y) 

for x, y E V .  

the invariant form 
We shall identify I with its dual-our ‘spin variable’ S will then take values in [-using 

(S,S) := itIs2. 
Any ‘timelike’ vector U E V such that g(u ,  U) = 1 defines the orthogonal decomposition of 
[ on ‘rotations’ and ‘boosts’: 

I 1 = 1, + (I,) 
s = (s- SU As U ) + S U , A g  U for s E I. 

The boost part, Su A~ U, is encoded in the vector U := Su belonging to ul-the orthogonal 
complement of U. The rotation part, S - Su U, is also encoded in a vector o E U’? such 
that 

(s - su As u)x = 0 X x for X E U’ 

where x denotes the three-dimensional vector product in U’ (suppose we fix an overall 
orientation). Therefore, we can represent S E [by a pair of vectors, (U, U), where o, U E uL. 
Using the bijection between I, and ([,)I (both are isomorphic to uL), one can see that 
t N ([.)@. The appropriate complex structure on g is given by the following ‘multiplication 
by i ’:  

J ( w ,  U) := (--U, 0). 

We conclude that OJ is calculated from S as follows: o = ( J S ) u  (recall that U = Su). 
In terms of components CO, U, the Killing form reads 

(S, S} = g(0,  o) - g(u, U) = -(wZ - v2) 

where wz := -g(w, o) denotes the positive definite metric in the three-dimensional space. 
We have 

(JS, S) = -2g(0, U) = 2 w .  v 

(s, s)@ = (s, S) - i (JS,  S) = -(w2 -U’) - 2iw. v = -(w + iu)’. 

and the complex invariant form on I which extends the previous real form on I. is given by 

Knowing that N sl(2, C), one can easily see that the value of the complex Killing form 
fully specifies the adjoint orbit (if we consider only non-trivial orbits). Therefore, for any 
complex number z = a  + ib we have the orbit 

(z and -2 correspond to the same orbit). 
Corresponding extended phase spaces are 12-dimensional. 

Each such orbit is of dimension four. 
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4. Fixing spin and mass 

Each extended phase space Pr = T*M x 0, decomposes onto orbits of the Poincar6 group. 
Generically, they are obtained by fixing values of the two invariants: spin and mass. We 
shall discuss only the case of the positive value of the mass square: 

m2 := g(p,  p )  z 0. 

For simplicity, we identify the momentum p E V‘ with the corresponding vector g-’ (p)  E 
V. The spin s is given by the following expression 

s2 = - g ( ( J S ) u ,  ( J S ) U )  = w2 

where U := p / m  is the unit vector in the direction of p (recall that the Pauli-Lubanski 
vector is defined by W = ( J S ) p ) .  

Fixing m and s, we obtain generically a 10-dimensional coisotropic submanifold (‘spin 
and mass shell’) in Pi. The characteristic foliation on this submanifold is therefore two- 
dimensional. In order to’find the leaves of this foliation, it is sufficient to integrate the 
Hamiltonian vector fields of i m 2  and is’. Since 

ITm 1 2  XI = P {$m2,  p )  = O [in2, S} = o 
the mass constraint generates the usual rectilinear motion with conserved p and S and 
four-velocity U. In order to calculate the Poisson brackets with ts’, note, that 

sz = g(S% U) + (S, S) 

A simple calculation then yields 

{IS 1 2  , p )  0 { z S  1 2  , X )  = -(s 1 2  U Ag U)U [zS 1 2  , S )  = -Szu Ab U E (Iu)’ 
m 

(in order to compute the last Poisson.brackets, note, that the matrix elements S j k  of S, which 
are functions on I, correspond via the chosen invariant form to -gjLef ek hence their 
Poisson brackets are minus the standard ones (7)). It follows that p and o (the rotational 
part of S) are conserved. Since S*U = Su = w x v + Au, we have S2u A~ U = (w x v)u, 
hence the flow of fs’ changes U (the boost part of S) according to 

1 2  Iss , v )  =w x v. 

It means that v simply rotates around the w axis. Since 

vector 
1 

f.:= x + -su 
m 

is conserved, and x moves on a circle around the axis passing through f in the direction of 
w:  

We conclude that the characteristics have the f o m  of a two-dimensional cylinder. Their 
projections on the Minkowski spacetime are then ‘world tubes’ rather than ‘world lies’. 
Each of these world tubes corresponds to a point of the coadjoint orbit in g* (with the fixed 
value of m and s) and should represent the ‘history’ of the elementary system. In this sense 
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we have obtained 'two-dimensional txajectories'. In a co-moving frame, an observer should 
see a circle of the radius r with 

(v' denotes the component of v perpendicular to U), i.e. 
1 

m2s2 
r2 = -(sz - a2)(s2 + b'). 

For a fixed radius r and orbit O,, z = a +bi, the above equation imposes a relation between 
spin and mass, asymptotically linear (Regge trajectory?). 

5. Quantization 

The scheme we have presented is sufficiently universal in order to describe immediately the 
quantum case. Let us consider for example the case z = 0. One can show that 

0 0  N T*S2\S2 

the cotangent bundle to the 2-sphere without the image of the zero section, where the 
cotangent bundle polarization corresponds to an invariant polarization on 00. The sphere 
Sz here is in fact the celestial sphere~(projective forward light cone in V). Neglecting the 
measure zero set we have 

Po = T"M x 00 T*(M X Sz) 

whose quantum counterpart is 

L y M )  @I LZ(S2) = LZ(M x 9). 
Now the wave equations corresponding to the 'mass and spin shell' are simply obtained by 
replacing the classical quantities by the quantum ones: 

(8) 
Ox?!% 8) = m 2 W , B )  I 6'2+(x,8) = m2s(s + I)$@, 8). 

Here 0, is the d'Alembert operator with respect to the x variable, e denotes the variable 
on Sz and e2 arises from 

W 2  = -g(W, W )  = - g ( ( J S ) p ,  ( J S ) p )  = g ( ( J S ) 2 p ,  P) 
= g ( s z p ,  P) + (s ,  s ) g ( p ,  P) = -gjkSjlP's'aP" + (s, S)m2 

by replacing Pk by -ia/ax' and Sj l  by the generators of the representation of the Lorentz 
group L in L2(S2). 

The simplest orbit 00 corresponds to a unitary representation of the Lorentz group 
which contains only integral spins (the minimal spin is zero). In order to also be able to 
pick up half-integral spins, one has to consider other orbitskepresentations. Orbits e?, with 
z # 0, are known to be Lagrangian bundles over S2 (affine bundles modelled on T'SZ). 
Using geometric quantization, one can construct (for quantizable orbits, i.e. for a being 
half-integer) the corresponding unitary representations of the Lorentz group (or, rather its 
universal cover, SL(2, C)) and then wavefunctions on S2 have to be replaced by sections 
of a suitable complex line bundle over S2. This way one obtains the principal series of 
representations of SL(2, C) numbered by two parameters: one discrete and one continuous. 
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The orbit U,, z = a + bi, corresponds to the unitary representation of SL(2, C) induced 
from the representation of the parabolic subgroup: 

(a is half-integer). 

Remark. In order to obtain the quantum case, it is not necessary to consider first the 
classical case and then to worry about correct quantization. We can just consider any 
irreducible unitary representation of L in a Hilbert space H ,  and pick up (by any means) a 
(generalized) irreducible subrepresentation of G in L2(M)  @ H ,  which, essentially, amounts 
again to equations (8). 

Problem. 
equations in some standard formulation? 

What is the direct relation between solutions of (8) and solutions of wave 

6. Fixing spin only 

It is natural to look for a possibility to fix spin first in order to obtain a 10-dimensional 
reduced symplectic manifold. In this manifold we could then consider a pure mass shell 
(being more close to the concept of a wave equation in the traditional sense). 

C,, = {spin = s] c (P2)+ = ( T ' M ) +  x 0, c Pz 

We thus consider the submanifold 

of a fixed spin. Here (T'M), = M x Vf is the subset of T'M corresponding to timelike 
momenta. 

We recall that the characteristics on C,,,v are topological circles whose projection on M 
are circles (in the co-moving frame) of the radius r given by 

It follows that the spin function is bounded from below on (P,)+: 

s > 101. 
We then have two cases. 

(1) s > [al. In this case r > 0, hence & # 0 (characteristics really exist), d o 2 )  # 0 
and dim C,,$ = 11 (Cz,,T is coisotropic). The projections of characteristics on M are 'circles' 
(not points), therefore the variables x k  do rzotpass to the quotient 

PZ,$ := C,,,y/{circles]. 

Still, the 'renormalized' position X = x - ~ S U  is of course well defined on Pz,s. Since 
we have coisotropic constraints, the Poisson bracket of Z j  and X L  in PZ.$ is equal to their 
Poisson bracket in Pz. The calculation gives 

(9) 
1 1 .  

{ i j , . ? ' ]  = - (S jk  - (Su)'uk + ( S U ) ~ U ~ )  = 7 R J k  (m2 G p 2 )  m2 m 
where R := S - Su A~ U is the rotation part of S (with respect to U). The full description of 
Pz,E can be given in terms of S j ,  pk, R E [ (such that Ru = 0, ( R ,  R )  = -s2) and Poisson 
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brackets 

{ p r .  Z j )  = S i  {pw. p j )  = 0 { - j  -' - -RJk hr 4") = 0 x . x  1 -  
I .  

m2 

1 
m 

{ R j k .  nil = -(Raluj - Rjiud IRjn, RI"] = 4 R j &  + R ~ x i j i  - Rj& - RrIij.) 

where i j k  = g j k  - UjUk is the three-dimensional metric. 
(2) s = lal. In this case to2 = a', hence u2 = bz. Since w. U = ab, ZI 11 w and it is 

easy to see that dimC,,$ = 10. Calculating the symplectic form in PZr on vectors tangent 
to C,,$ we obtain the following results: 

(i) for a # 0, C,, is a symplectic (sub)manifold (second class constraints!) and 

In particular, when b = 0, { x j ,  x k }  = Rjk/m2 = Sjk /mZ ( R  = S in this case). 
(ii) for a = 0, C,,,? is coisotropic and Pz,,T N T'M (the spinless case). 

7. Conelusions 

We have constructed extended phase spaces as symplectic manifolds endowed with a 
Hamiltonian action of the Poincard group and carrying a localization structure. Trajectories 
of an elementary system are characteristics on the 'spin and mass' shell in the extended 
phase space. They are typically two-dimensional, due to the fact that we impose two 
constraints. The value of spin is related to the radius r of the world tube. For big values 
of s, or for Po, this relation looks as follows 

s = mi-. 

This is reminiscent of the orbital angular momentum of a particle with (effective, not rest) 
mass m moving on a circle of radius r with the velocity of light (c = 1). 

An attempt to introduce an 'intermediary extended phase space' (by a reduction with 
respect to a fixed spin) which would be still fibred over spacetime (to this end we 
have to modify the original fibration), leads to 'non-commutative' spacetime. The non- 
commutativity holds between the coordinates in the two-dimensional subspace orthogonal 
to the four-velocity and the actual direction of spin (the subspace of rotation). The proper 
angular momentum plays therefore the role of the 'source of non-commutativity'. 

In the case of the extreme value of spin on Pz, the original fibration over spacetime 
does not have to be modified. However, since the reduction is not coisohopic in this case, 
the original positions no longer commute (as functions on the constraint manifold). The 
commutation rules have here the form similar to the previous ones, with spin being the 
source of the non-commutativity. Since the reduction is not coisotropic, we do not have, 
unlike before, the 'mechanical' explanation of the non-commutativity in terms of replacing 
the commuting control parameters (canonical positions) by new control parameters (kinetic 
positions), no longer commuting, chosen for the reason of good transformation properties 
(in this connection, see also [6]) .  
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